Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5612-5622, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114154

RESUMO

This study aims to investigate the intervention effect of the aqueous extract of Epimedium sagittatum Maxim on the mouse model of bleomycin(BLM)-induced pulmonary fibrosis, so as to provide data support for the clinical treatment of pulmonary fibrosis. Ninety male C57BL/6N mice were randomized into normal(n=10), model(BLM, n=20), pirfenidone(PFD, 270 mg·kg~(-1), n=15), and low-, medium-, and high-dose E. sagittatum extract(1.67 g·kg~(-1), n=15; 3.33 g·kg~(-1), n=15; 6.67 g·kg~(-1), n=15) groups. The model of pulmonary fibrosis was established by intratracheal instillation of BLM(5 mg·kg~(-1)) in the other five groups except the normal group, which was treated with an equal amount of normal saline. On the day following the modeling, each group was treated with the corresponding drug by gavage for 21 days. During this period, the survival rate of the mice was counted. After gavage, the lung index was calculated, and the morphology and collagen deposition of the lung tissue were observed by hematoxylin-eosin(HE) and Masson staining, respectively. The levels of reactive oxygen species(ROS) in lung cell suspensions were measured by flow cytometry. The levels of glutathione peroxidase(GSH-Px), total superoxide dismutase(T-SOD), and malondialdehyde(MDA) the in lung tissue were measured. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling(TUNEL) was employed to examine the apoptosis of lung tissue cells. The content of interleukin-6(IL-6), chemokine C-C motif ligand 2(CCL-2), matrix metalloproteinase-8(MMP-8), transforming growth factor-beta 1(TGF-ß1), alpha-smooth muscle actin(α-SMA), E-cadherin, collagen Ⅰ, and fibronectin in the lung tissue was measured by enzyme-linked immunosorbent assay(ELISA). The expression levels of F4/80, Ly-6G, TGF-ß1, and collagen Ⅰ in the lung tissue were determined by immunohistochemistry. The mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue were determined by qRT-PCR. The content of hydroxyproline(HYP) in the lung tissue was determined by alkaline hydrolysation. The expression of α-SMA and E-cadherin was detected by immunofluorescence, and the protein levels of α-SMA, vimentin, E-cadherin in the lung tissue were determined by Western blot. The results showed the aqueous extract of E. sagittatum increased the survival rate, decreased the lung index, alleviated the pathological injury, collagen deposition, and oxidative stress in the lung tissue, and reduced the apoptotic cells. Furthermore, the aqueous extract of E. sagittatum down-regulated the protein levels of F4/80 and Ly-6G and the mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue, reduced the content of IL-6, CCL-2, and MMP-8 in the alveolar lavage fluid. In addition, it lowered the levels of HYP, TGF-ß1, α-SMA, collagen Ⅰ, fibronectin, and vimentin, and elevated the levels of E-cadherin in the lung tissue. The aqueous extract of E. sagittatum can inhibit collagen deposition, alleviate oxidative stress, and reduce inflammatory response by regulating the expression of the molecules associated with epithelial-mesenchymal transition, thus alleviating the symptoms of bleomycin-induced pulmonary fibrosis in mice.


Assuntos
Epimedium , Fibrose Pulmonar , Camundongos , Masculino , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Epimedium/metabolismo , Fibronectinas/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/farmacologia , Metaloproteinase 7 da Matriz/uso terapêutico , Metaloproteinase 8 da Matriz/metabolismo , Metaloproteinase 8 da Matriz/farmacologia , Metaloproteinase 8 da Matriz/uso terapêutico , Vimentina/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Pulmão , Colágeno/metabolismo , Bleomicina/toxicidade , RNA Mensageiro/metabolismo , Caderinas/metabolismo
2.
Fitoterapia ; 168: 105465, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36863569

RESUMO

An effort to identify novel active substances of the prepared folium of Epimedium sagittatum Maxim. (PFES) that was an important herb for male erectile dysfunction (ED) was taken. At present, phosphodiesterase-5A (PDE5A) is the most important target of new drugs for the treatment of ED. Therefore, the inhibition ingredients in PFES were systematically screened for the first time in this study. Eleven compounds, including eight new flavonoids and three prenylhydroquinones were isolated: sagittatosides DN (1-11), and their structures were elucidated by spectra and chemical analyses. Among them, a novel prenylflavonoid with oxyethyl group (1) was obtained and three prenylhydroquinones (9-11) were firstly isolated from Epimedium. All compounds were analyzed for the inhibition against PDE5A by molecular docking, and they all showed significant binding affinity as same as sildenafil. Their inhibitory activities were verified, and the results showed compound 6 had significant inhibition against PDE5A1. The isolation of new flavonoids and prenylhydroquinones with inhibitory activities of PDE5A from PFES implied that this herb might be a good source for the treatment of ED agents finding.


Assuntos
Epimedium , Flavonoides , Epimedium/química , Epimedium/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Citrato de Sildenafila/metabolismo
3.
Oxid Med Cell Longev ; 2022: 3858314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338345

RESUMO

Ischemic stroke exhibits high morbidity, disability, and mortality, and treatments for ischemic stroke are limited despite intensive research. The potent neuroprotective benefits of Epimedium against ischemic stroke have gained lots of interest. Nevertheless, systematic research on the direct role and mechanisms of Epimedium in ischemic stroke is still lacking. Network pharmacology analysis coupled with experimental verification was utilized to systematically evaluate the potential pharmacological mechanism of Epimedium against ischemic stroke. The TCMSP database was used to mine the bioactive ingredients and Epimedium's targets. The DrugBank, OMIM, and GeneCards databases were employed to identify potential targets of ischemic stroke. GO and KEGG pathway analyses were also carried out. The interaction between active components and hub targets was confirmed via molecular docking. An experimental ischemic stroke model was used to evaluate the possible therapeutic mechanism of Epimedium. As a result, 23 bioactive compounds of Epimedium were selected, and 30 hub targets of Epimedium in its function against ischemic stroke were identified, and molecular docking results demonstrated good binding. The IL-17 signaling pathway was revealed as a potentially significant pathway, with the NF-κB and MAPK/ERK signaling pathways being involved. Furthermore, in vivo experiments demonstrated that Epimedium treatment could improve neurological function and reduce infarct volume. Additionally, Epimedium reduced the activation of microglia and astrocytes in both the ischemic penumbra of the hippocampus and cerebral cortex following ischemic stroke. Western blot and RT-qPCR analyses demonstrated that Epimedium not only depressed the expression of IL-1ß, TNF-α, IL-6, and IL-4 but also inhibited the NF-κB and MAPK/ERK signaling pathways. This study applied network pharmacology and in vivo experiment to explore possible mechanism of Epimedium's role against ischemic stroke, which provides insight into the treatment of ischemic stroke.


Assuntos
Medicamentos de Ervas Chinesas , Epimedium , AVC Isquêmico , Humanos , Epimedium/química , Epimedium/metabolismo , AVC Isquêmico/tratamento farmacológico , NF-kappa B/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia
4.
Medicine (Baltimore) ; 101(32): e29844, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960074

RESUMO

Epimedium has gained widespread clinical application in Traditional Chinese Medicine, with the functions of promoting bone reproduction, regulating cell cycle and inhibiting osteoclastic activity. However, its precise cellular pharmacological therapeutic mechanism on osteoporosis (OP) remains elusive. This study aims to elucidate the molecular mechanism of epimedium in the treatment of OP based on system bioinformatic approach. Predicted targets of epimedium were collected from TCMSP, BATMAN-TCM and ETCM databases. Differentially expressed mRNAs of OP patients were obtained from Gene Expression Omnibus database by performing Limma package of R software. Epimedium-OP common targets were obtained by Venn diagram package for further analysis. The protein-protein interaction network was constructed using Cytoscape software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out by using clusterProfiler package. Molecular docking analysis was conducted by AutoDock 4.2 software to validate the binding affinity between epimedium and top 3 proteins based on the result of protein-protein interaction. A total of 241 unique identified epimedium targets were screened from databases, of which 62 overlapped with the targets of OP and were considered potential therapeutic targets. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that these targets were positive regulation of cell cycle, cellular response to oxidative stress and positive regulation of cell cycle process as well as cellular senescence, FoxO, PI3K-Akt, and NF-kappa B signaling pathways. Molecular docking showed that epimedium have a good binding activity with key targets. Our study demonstrated the multitarget and multi-pathway characteristics of epimedium on OP, which elucidates the potential mechanisms of epimedium against OP and provides theoretical basis for further drug development.


Assuntos
Medicamentos de Ervas Chinesas , Epimedium , Osteoporose , Biologia Computacional , Medicamentos de Ervas Chinesas/uso terapêutico , Epimedium/química , Epimedium/metabolismo , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Osteoporose/tratamento farmacológico , Osteoporose/genética , Fosfatidilinositol 3-Quinases/metabolismo
5.
Phytochemistry ; 202: 113314, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35810878

RESUMO

Epimesatines A-I, nine undescribed prenylated flavonoids, along with ten known analogues, were isolated from the aerial parts of Epimedium sagittatum Maxim. The structures and absolute configurations of epimesatines A-I were determined using a combination of spectroscopic data, Rh2(OCOCF3)4-induced electronic circular dichroism (ECD) experiments, ECD comparisons, and X-ray crystallography analysis. Epimesatines A and I displayed notable activities on the viabilities of human non-small cell lung cancer (NSCLC) A549 cells with IC50 values of 1.77 and 9.97 µM, respectively. Furthermore, epimesatines A and I significantly inhibited the expression of sphingosine kinase 1 (SPHK1) in A549 cells. In addition, none of these compounds showed obvious toxicity on normal human lung bronchial epithelial BEAS-2B cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Epimedium , Neoplasias Pulmonares , Epimedium/química , Epimedium/metabolismo , Flavonoides/química , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)
6.
Contrast Media Mol Imaging ; 2022: 2869707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685668

RESUMO

Purpose: The aim of the study was to study the protective effect of the Rhizoma Drynariae-Epimedium formula on osteoarthritis in rats and to explore its mechanism. Methods: Fifty SD rats were randomly divided into 5 groups, namely, the control group, model group, Rhizoma Drynariae group, Epimedium group, and Rhizoma Drynariae-Epimedium group, with 10 rats in each group. Knee arthritis models were established by injecting papain solution (10% papain + 0.03 mol/L L-cysteine mixture) into the knee joint cavity of SD rats on the 0th, 3rd, and 6th days of the experiment, respectively. The model group, Rhizoma Drynariae group, Epimedium group, and Rhizoma Drynariae-Epimedium group were given modeling treatment, while the control group was not given modeling treatment. The Rhizoma Drynariae group, Epimedium group, and the Rhizoma Drynariae-Epimedium group were, respectively, given corresponding solvent gavage treatment. Both the model group and the control group were given an equal volume of normal saline. Once a day, a total of 4 w were administered. The general conditions of the rats were observed and recorded, and the knee joint width and the knee joint swelling degree of the affected side were measured and compared. HE staining and Safranin O-fast green staining were used to compare the structural changes of cartilage. The concentrations of inflammatory factors IL-1ß, IL-6, and TNF-α in the joint cavity lavage fluid were determined by using ELISA. The expression of key proteins of the MAPK signaling pathway (p38, p-p38, ERK, p-ERK, JNK, and p-JNK) in joint synovial tissue was determined by western blotting. Results: After modeling, except for the normal activities of the SD rats in the control group, the rest of the groups showed lack of energy and a slight limp in the knee joints. The SD rats in the model group, Rhizoma Drynariae group, Epimedium group, and Rhizoma Drynariae-Epimedium group had local swelling of the knee joint, and the knee joint width was greater than those in the control group (p < 0.05). Compared with the model group, the knee joint swelling of SD rats in the Rhizoma Drynariae group, the Epimedium group, and the Rhizoma Drynariae-Epimedium group was significantly reduced. The knee joint swelling degree of SD rats in the Rhizoma Drynariae-Epimedium group was significantly lower than that in the Rhizoma Drynariae and Epimedium groups. HE staining and Safranin O-fast green staining showed that the cartilage structure of SD rats was severely damaged and eroded, and the subchondral bone mass was reduced. Compared with the model group, the damage of cartilage tissue in the Rhizoma Drynariae group, Epimedium group, and Rhizoma Drynariae-Epimedium group was less severe. In the Rhizoma Drynariae-Epimedium group, cartilage tissue structure damage and erosion were lighter than those of the Rhizoma Drynariae group and the Epimedium group. The concentrations of inflammatory factors IL-1ß, IL-6, and TNF-α in the articular cavity lavage fluid of SD rats in the model group, Rhizoma Drynariae group, Epimedium group, and Rhizoma Drynariae-Epimedium group were higher than those in the control group. Compared with the model group, the concentrations of IL-1ß, IL-6, and TNF-α in the joint cavity lavage fluid of the Rhizoma Drynariae group, Epimedium group, and Rhizoma Drynariae-Epimedium group were significantly decreased. In the Rhizoma Drynariae-Epimedium group, IL-1ß, IL-6, and TNF-α concentrations were lower than those of the Rhizoma Drynariae and Epimedium groups. Compared with the control group, the expression levels of p-p38, p-ERK, and p-JNK proteins in the model group, Rhizoma Drynariae group, Epimedium group, and Rhizoma Drynariae-Epimedium group were significantly increased. The expression levels of p-ERK, p-p38 and p-JNK in the Drynariae group, Epimedium group, and Drynariae-Epimedium group were significantly lower than those in the model group. The expression levels of p-ERK, p-p38, and p-JNK in the Rhizoma Drynariae-Epimedium group were significantly lower than those in the Rhizoma Drynariae and Epimedium groups. Conclusion: The Rhizoma Drynariae-Epimedium formula can play a protective role in the process of osteoarthritis by inhibiting the phosphorylation levels of p38, ERK, and JNK-related proteins in the cartilage tissue MAPK signaling pathway, reducing the inflammatory response.


Assuntos
Epimedium , Osteoartrite , Polypodiaceae , Animais , Epimedium/metabolismo , Interleucina-6 , Osteoartrite/tratamento farmacológico , Papaína , Polypodiaceae/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
7.
Sci Rep ; 12(1): 2762, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177764

RESUMO

Herba Epimedii, as a traditional Chinese herb, is divided into large and small flower taxa, and can invigorate sexuality and strengthen muscles and bones. Herba Epimedii is rich in flavonoids, which largely contribute to its medicinal benefits. In our previous studies, we have found that the flavonoids content was much more in small than large flower taxa. To further identify molecular mechanisms of flavonoids metabolism in Herba Epimedii, combined metabolome and transcriptomic analyses were performed to profile leaves and flowers. Association analysis revealed that the expression of genes involved in flavonoid biosynthesis showed significant differences between small and large flower taxa. Eleven flavonols significantly increased in small compared to large flower taxa. Moreover, genes encoding O-methyltransferase played crucial roles in flavonoids metabolism by an integrated analysis. Taken together, these data highlight the breeding tendency of small flower taxa to improve the quality of Herba Epimedii.


Assuntos
Epimedium/metabolismo , Flavonoides/biossíntese , Flores/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Transcriptoma , Epimedium/genética , Flavonoides/genética , Flores/genética
8.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208231

RESUMO

Phytochemical investigation on the n-BuOH-soluble fraction of the aerial parts of Epimedium koreanum using the PCSK9 mRNA monitoring assay led to the identification of four previously undescribed acylated flavonoid glycosides and 18 known compounds. The structures of new compounds were elucidated by NMR, MS, and other chemical methods. All isolated compounds were tested for their inhibitory activity against PCSK9 mRNA expression in HepG2 cells. Of the isolates, compounds 6, 7, 10, 15, and 17-22 were found to significantly inhibit PCSK9 mRNA expression. In particular, compound 7 was shown to increase LDLR mRNA expression. Thus, compound 7 may potentially increase LDL uptake and lower cholesterol levels in the blood.


Assuntos
Epimedium/química , Flavonoides/química , Glicosídeos/química , Inibidores de PCSK9 , RNA Mensageiro/antagonistas & inibidores , Linhagem Celular Tumoral , Epimedium/metabolismo , Flavonoides/metabolismo , Flavonoides/farmacologia , Glicosídeos/metabolismo , Glicosídeos/farmacologia , Humanos , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/metabolismo , Prenilação , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/agonistas
9.
Molecules ; 26(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802139

RESUMO

It is usually a tedious task to profile the chemical composition of a given herbal medicine (HM) using high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) due to the time-consuming sample preparation and laborious post-acquisition data processing procedures. Even worse, some labile compounds may face degradation risks when exposed to organic solvents for a relatively long period. As one of the most popular HMs, the promising therapeutic benefits of Epimedii Herba (Chinese name: Yinyanghuo) are well defined; however, the chemical profile, and in particular those flavonoids that have been claimed to be responsible for the efficacy, remains largely unknown. Attempts are devoted here to achieve direct LC-MS measurement and efficient post-acquisition data processing, and chemome comparison among three original sources of Epimedii Herba, such as Epimedium sagittatum (Esa), E. pubescens (Epu), and E. koreanum (Eko) was employed to illustrate the strategy utility. A home-made online liquid extraction (OLE) module was introduced at the front of the analytical column to comprehensively transfer the compounds from raw materials onto the LC-MS instrument. A mass defect filtering approach was programmed to efficiently mine the massive LC-MS dataset after which a miniature database was built involving all chemical information of flavonoids from the genus Epimedium to draw a pentagonal frame to rapidly capture potential quasi-molecular ions (mainly [M-H]-). A total of 99 flavonoids (66 in Esa, 84 in Eko, and 66 in Epu) were captured, and structurally annotated by summarizing the mass fragmentation pathways from the mass spectrometric data of authentic compounds and an in-house data library as well. Noteworthily, neutral loss of 144 Da was firstly assigned to the neutral cleavage of rhamnosyl residues. Significant species-differences didn't occur among their chemical patterns. The current study proposed a robust strategy enabling rapid chemical profiling of, but not limited to, HMs.


Assuntos
Epimedium/química , Flavonoides/química , China , Cromatografia Líquida de Alta Pressão/métodos , Epimedium/metabolismo , Flavonoides/metabolismo , Medicina Tradicional Chinesa/métodos , Plantas Medicinais/química , Espectrometria de Massas em Tandem/métodos
10.
Bioorg Chem ; 104: 104296, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32987308

RESUMO

The minor flavonoid baohuoside I from Herba epimedii has better bioactivities than its precursor compounds icariin and other major epimedium flavonoids. In this study, a novel ß-glucosidase gene (Igag_0940) was cloned and expressed to improve the conversion efficiency in the process of baohuoside I production. For the first time, the recombinant IagBgl1 was purified and then identified uniquely as a trimer in GH 1 family protein from Archaea. The maximum activity of recombinant IagBgl1 was exhibited at 95 °C, pH 6.5, and it retained more than 70% after incubation at 90 °C for 4 h. IagBgl1 had a high catalytic activity towards icariin with a Kcat/Km ratio of 488.19 mM-1·s-1. Under optimized conditions (65 °C, pH 6.5, 0.8 U/mL enzyme, and 90 min), 10 g/L icariin was transformed into 7.564 g/L baohuoside I with a molar conversion of 99.48%. Meanwhile, 2.434 g/L baohuoside I was obtained from 10 g/L total epimedium flavonoids by a two-step conversion system built with IagBgl1 and two other thermostable enzymes. This is the first report of enzymatic conversion for producing baohuoside I by thermostable enzymes.


Assuntos
Crenarchaeota/enzimologia , Epimedium/química , Flavonoides/metabolismo , beta-Glucosidase/metabolismo , Relação Dose-Resposta a Droga , Epimedium/metabolismo , Flavonoides/biossíntese , Flavonoides/química , Glucose/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Temperatura , beta-Glucosidase/genética
11.
J Photochem Photobiol B ; 197: 111550, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31330424

RESUMO

The plant species of the genus Epimedium L. are well-known traditional Chinese medicinal herbs with special therapeutic effects on human beings and animals in invigorating sexuality and strengthening muscles and bones. In large-scale cultivating Epimedium that is a typical shade plant species, they are arbitrarily covered with black colored shade nets. However, their optimal growth conditions, especially light, are still less understood. During the investigation of different light qualities on the growth of Epimedium pseudowushanense, it was found that, all the values of plant growth characteristics (except shoot number) and photosynthetic characteristics were lower under red, yellow, or blue light treatment than under white light treatment. However, yellow light treatment had beneficial effects on shoot number, dry biomass (per plant) as well as net photosynthesis rate (Pn) and maximal apparent quantum efficiency (AQY) in E. pseudowushanense when compared with red or blue light treatment. More importantly, we found that E. pseudowushanense accumulated higher levels of bioactive flavonoids under yellow light treatment than under white, red, or blue light treatment. Furthermore, both RNAseq and qPCR analyses revealed that yellow light could highly up-regulate the expression levels of flavonoid biosynthetic genes, in particular CHS1, F3H1, PT_5, and raGT_5 that possibly contributed to the enhanced accumulation of bioactive flavonoids in E. pseudowushanense. Taken together, our study revealed that yellow light is the optimal light for the growth of E. pseudowushanense. Our results provided key information on how to improve the cultivation condition and concurrently enhance the accumulation of bioactive flavonoids in E. pseudowushanense.


Assuntos
Epimedium/metabolismo , Flavonoides/metabolismo , Luz , Biomassa , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas , Epimedium/crescimento & desenvolvimento , Epimedium/efeitos da radiação , Flavonoides/análise , Fotossíntese/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/efeitos da radiação , RNA de Plantas/genética , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Transcriptoma/efeitos da radiação
12.
Molecules ; 25(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905759

RESUMO

Epimedium folium is the major medicinally-used organ of Epimedium species and its metabolic changes during the leaf growth have not been studied at the metabolomic level. E. pubescens is one of five recorded species in the Pharmacopoeia of the People's Republic of China and widely grows in China. A UPLC-ESI-MS/MS-based targeted metabolomic analysis was implemented to explore the metabolite composition in E. pubescens leaves under the cultivation condition and further to investigate their temporal variations among four representative growth stages. A total of 403 metabolites, including 32 hitherto known in Epimedium species, were identified in E. pubescens leaf, of which 302 metabolites showed the growth/development-dependent alterations. Flavonoid-type compounds were the major composition of the metabolites identified in this study. Most flavonoids, together with tannin-type and lignans and coumarin-type compounds, were up-regulated with E. pubescens leaf growth and maturation after the full flowering stage. Our results not only greatly enriched the existing Epimedium phytochemical composition database and also, for the first time, provided the metabolomics-wide information on metabolic changes during E. pubescens leaf growth and development, which would facilitate in the choice of an optimum harvest time to balance a higher biomass yield of Epimedium folium with its better medicinal quality.


Assuntos
Epimedium/química , Metaboloma , Metabolômica , Desenvolvimento Vegetal , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Análise por Conglomerados , Epimedium/crescimento & desenvolvimento , Epimedium/metabolismo , Flavonoides/química , Metabolômica/métodos , Compostos Fitoquímicos/química , Folhas de Planta/metabolismo , Espectrometria de Massas em Tandem
13.
Zhongguo Zhong Yao Za Zhi ; 43(23): 4709-4717, 2018 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-30717562

RESUMO

The aim of this paper was to find out the active components of Epimedium brevicornum using network pharmacology, and find the potential targets and mechanisms. The TCMSP database was used to screen the active ingredients, and TTD and DrugBank databases were used to predict the potential targets with the literature mining. The pathway annotation was used to enrich and analyze the active ingredients and potential targets of E. brevicornum. The results showed that E. brevicornum had34 potential target active ingredients, including 21 flavones components, such as icariin, epimedin A, epimedin B, epimedin C, Yinyanghuo A, Yinyanghuo C and so on, 2 lignans involved in (+)-cycloolivil and olivil, 3 sterols consisting of sitosterol, 24-epicampesterol and poriferast-5-en-3beta-ol. The main predicted targets included Ptgs2, NCOA6, RANK, OPG, WNT9B, PTH1R, BMPs, SMAD4A and so on. There were 88 signaling pathways involved in 10 signaling pathways which was related to inflammation, such as NF-kappa B signaling pathway, T cell receptor signaling pathway, IL-17 signaling pathway and 10 pathways which was related to cancer included breast cancer, bladder cancer, pancreatic cancer and so on, and estrogen related signaling pathways included estrogen signaling pathway. This laid the foundation for the discovery of the active components of Epimedium and the study on its mechanism of action.


Assuntos
Epimedium/metabolismo , Epimedium/classificação , Estrogênios , Flavonoides , Transdução de Sinais
14.
PLoS One ; 12(8): e0182348, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28786984

RESUMO

Epimedium pseudowushanense B.L.Guo, a light-demanding shade herb, is used in traditional medicine to increase libido and strengthen muscles and bones. The recognition of the health benefits of Epimedium has increased its market demand. However, its resource recycling rate is low and environmentally dependent. Furthermore, its natural sources are endangered, further increasing prices. Commercial culture can address resource constraints of it.Understanding the effects of environmental factors on the production of its active components would improve the technology for cultivation and germplasm conservation. Here, we studied the effects of light intensities on the flavonoid production and revealed the molecular mechanism using RNA-seq analysis. Plants were exposed to five levels of light intensity through the periods of germination to flowering, the flavonoid contents were measured using HPLC. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that the flavonoid contents varied with different light intensity levels. And the largest amount of epimedin C was produced at light intensity level 4 (I4). Next, the leaves under the treatment of three light intensity levels ("L", "M" and "H") with the largest differences in the flavonoid content, were subjected to RNA-seq analysis. Transcriptome reconstruction identified 43,657 unigenes. All unigene sequences were annotated by searching against the Nr, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. In total, 4008, 5260, and 3591 significant differentially expressed genes (DEGs) were identified between the groups L vs. M, M vs. H and L vs. H. Particularly, twenty-one full-length genes involved in flavonoid biosynthesis were identified. The expression levels of the flavonol synthase, chalcone synthase genes were strongly associated with light-induced flavonoid abundance with the highest expression levels found in the H group. Furthermore, 65 transcription factors, including 31 FAR1, 17 MYB-related, 12 bHLH, and 5 WRKY, were differentially expressed after light induction. Finally, a model was proposed to explain the light-induced flavonoid production. This study provided valuable information to improve cultivation practices and produced the first comprehensive resource for E. pseudowushanense transcriptomes.


Assuntos
Epimedium/genética , Epimedium/efeitos da radiação , Flavonoides/biossíntese , Luz , Análise de Sequência de RNA , Relação Dose-Resposta à Radiação , Epimedium/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
15.
J Periodontal Res ; 52(1): 89-96, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26957413

RESUMO

BACKGROUND AND OBJECTIVE: Porphyromonas gingivalis is considered a major pathogen of chronic periodontitis, which also may be implicated with systemic diseases such as atherosclerosis. Secreted cysteine proteases, gingipains Rgp and Kgp, are essential for P. gingivalis virulence. Some polyphenols and flavonoids are known to inhibit gingipain activity and interfere with biofilm formation by P. gingivalis. Many bioactive compounds have been isolated from Epimedium species, but availability of these compounds on gingipains and P. gingivalis is still unclear. Therefore, the aim of this study was to evaluate natural products from medical plants to develop a new therapeutic agent against periodontal disease. MATERIAL AND METHODS: Prenylated flavonoids were isolated from Epimedium species plant using column chromatographies. The inhibitory effect of the prenylated flavonoids against protease activity of gingipains were examined using purified gingipains and fluorogenic substrates. Anti-P. gingivalis activity was evaluated to analyze planktonic growth and biofilm formation in brain heart infusion medium in the presence of the prenylated flavonoids. RESULTS: We isolated 17 prenylated flavonoids (Limonianin, Epimedokoreanin B, etc.) from Epimedium species. We found that some prenylated flavonoids inhibited gingipain activity in a non-competitive manner with Ki values at µm order. The prenylated flavonoids also hindered growth and biofilm formation of P. gingivalis, in a manner independent of gingipain inhibition by the compounds. CONCLUSION: The results indicated an inhibitory effect of the prenylated flavonoids against P. gingivalis and would provide useful information for future development of periodontitis treatment that suppresses gingipains, P. gingivalis growth and biofilm formation.


Assuntos
Adesinas Bacterianas/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cisteína Endopeptidases/efeitos dos fármacos , Flavonoides/farmacologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Epimedium/metabolismo , Flavonoides/isolamento & purificação , Cisteína Endopeptidases Gingipaínas , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/metabolismo , Prenilação
16.
Plant Cell Rep ; 35(4): 883-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26849670

RESUMO

KEY MESSAGE: A R2R3-MYB transcription factor EsAN2 was isolated from Epimedium sagittatum and functionally characterized to regulate the anthocyanin biosynthetic pathway. Epimedium plants are used widely both as traditional Chinese medicinal herbs and ornamental perennials. Anthocyanins, acting as major contributors to plant color diversity, their biosynthesis are regulated by a series of transcription factors, including MYB, bHLH and WD40 protein. Previously, a MYB transcription factor involved in regulation of the anthocyanin pathway from Epimedium sagittatum, EsMYBA1 has been isolated, but was found to be expressed mostly in leaves. In this research, another MYB transcription factor, designated as EsAN2, was isolated from flowers by the screening of E. sagittatum EST database. Preferential expression of EsAN2 in flowers and flower buds was found. Ectopic expression of EsAN2 in tobacco significantly enhanced the anthocyanin biosynthesis and accumulation, both in leaves and flowers. Most structural genes of the anthocyanin biosynthetic pathway were strongly upregulated, as well as two bHLH regulators (NtAn1a and NtAn1b) in old leaves of tobacco overexpressing EsAN2, compared to the control plants. While only three structural genes, chalcone synthase (CHS), chalcone isomerase (CHI) and anthocyanidin synthase (ANS), were upregulated by EsAN2 ectopic expression in tobacco flowers. Yeast two-hybrid assay showed that EsAN2 was capable of interacting with four bHLH regulators of the anthocyanin biosynthetic pathway. These results suggest that EsAN2 is involved in regulation of the anthocyanin biosynthesis in Epimedium flowers. Identification and characterization of EsAN2 provide insight into the coloration of Epimedium flowers and a potential candidate gene for metabolic engineering of flavonoids in the future.


Assuntos
Antocianinas/biossíntese , Vias Biossintéticas , Epimedium/metabolismo , Proteínas de Plantas/isolamento & purificação , Sequência de Aminoácidos , Vias Biossintéticas/genética , DNA Complementar/genética , Epimedium/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Análise de Sequência de Proteína , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
17.
Carbohydr Polym ; 138: 134-42, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26794746

RESUMO

One acidic polysaccharide named EPS-1 was isolated from the aqueous extract of the leaves of Epimedium acuminatum Franch. It may be composed of 1,4-linked α-d-GalpA, 1,3,4-linked α-d-GalpA, 1,6-linked ß-d-Galp and terminal α-l-Rhap residues in a molar ratio of 11.0:1.0:1.0:1.0 by chemical and spectroscopic analysis. EPS-1 possessed immune modulation effects on peripheral T lymphocyte and immature chBM-DCs such as promoting the proliferation and cytokine secretion of these cells and increasing the phagocytosis ability of immature chBM-DCs.


Assuntos
Epimedium/metabolismo , Polissacarídeos/química , Animais , Células da Medula Óssea/citologia , Proliferação de Células/efeitos dos fármacos , Galinhas , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Microscopia Eletrônica de Varredura , Fagocitose/efeitos dos fármacos , Folhas de Planta/metabolismo , Polissacarídeos/análise , Polissacarídeos/farmacologia
18.
Technol Health Care ; 23 Suppl 1: S9-S13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26410335

RESUMO

Photosynthetic responses to light environment can be useful measurements to determine favorable habitat conditions for the conservation and cultivation of medicinal species. The nonrectangular hyperbola model, rectangular hyperbola model, modified rectangular hyperbola model, exponential model, modified exponential model are used to explore the best model for describing light-response curves in two Epimedium species. The results show that the light-response curves of E. wushanense and E. acuminatum were best described by the modified exponential model, the test MSE and MAE of the modified exponential model were smaller, and the LSP and Pmax calculated by the modified exponential model were more accurate than those calculated by other models in E. wushanense and E. acuminatum. This model may be widely applicable to light-response curves of other Epimedium species.


Assuntos
Epimedium/metabolismo , Luz , Modelos Teóricos , Fotossíntese/fisiologia , Epimedium/crescimento & desenvolvimento , Humanos
19.
Nutr. hosp ; 32(2): 913-917, ago. 2015. tab, ilus
Artigo em Inglês | IBECS | ID: ibc-140031

RESUMO

The aim of this study is to evaluate the medicinal values of different parts of Epimedium brevicornu Maxim. and the effect of processing on major pharmaceutical ingredients in it. The contents of icariin and epimedin C in different parts and processed medicinal material of E. brevicornu in Taihang Mountain were determined with ultrasonic extraction and RP-HPLC. The results indicated that the contents of icariin and epimedin C, respectively 3.4524% and 0.5485%, in the leaf are higher than that in other parts. The contents of icariin and epimedin C, respectively 0.1942 % and 0.1342%, in the stem (include petiole) are the lowest. The contents of these ingredients in the root (include rhizome) are close to that in the leaf. The icariin and epimedin C in all parts of E. brevicornu reduced after processing. The content of icariin in the processed leaf is about 59.5% of that in unprocessed leaves. The effect of prossing on the content of icariin in the stem is unobvious. The content of epimedin C in the processed leaf is about 33.7% of that in unprocessed leaf. The content of epimedin C in the processed stem (include petiole) is about 36.9% of that in unprocessed stem. It is worth to exploit the stem and petiole of E. brevicornu because there are certain contents of pharmaceutical ingredients in them. The firepower should be paid attention to and the temperature should not be very high to avoid the damage on pharmaceutical ingredients in E. brevicornu when process it (AU)


Este estudio pretende evaluar los valores medicinales de diferentes partes de la Epimedium brevicornu Maxim y el efecto de su procesamiento sobre sus principales componentes farmacéuticos. El contenido de icariina y epimedin C en diferentes partes y en material medicinal procesado de Epimedium brevicornu en la montaña de Taihang fue determinado mediante extracción ultrasónica y RP-HPLC. Los resultados indicaron que el contenido de icariina y epimedin C, respectivamente 3,4524% y 0,5485%, en la hoja son mayores que en otras partes. El contenido de icariina y epimedin C, respectivamente 0,1942% y 0,1342%, en el tallo (peciolo incluido) es más bajo. El contenido de estos componentes en la raíz (rizoma incluido) es similar al de la hoja. El contenido de icariina y epimedin C en todas las partes de E. brevicornu se vio reducido después del procesado. El contenido de icariina en la hoja procesada es aproximadamente el 59,5% del de la hoja sin procesar. El efecto del procesado sobre el contenido de icariina en el tallo no es evidente. El contenido de epimedin C en el tallo procesado es de aproximadamente el 33,7% del de la hoja sin procesar. El contenido de epimedin C en el tallo procesado (peciolo incluido) es de aproximadamente el 36,9% de aquel del tallo sin procesar. Vale la pena aprovechar el tallo y peciolo de la E. brevicornu porque hay cierto contenido de componentes farmacéuticos en ellos. Hay que controlar la potencia de fuego y la temperatura no debe ser muy alta para evitar dañar los componentes farmacéuticos de la E. brevicornu (AU)


Assuntos
Epimedium/metabolismo , Epimedium/fisiologia , Rizoma/metabolismo , Rizoma/fisiologia , Metanol , Cromatografia Líquida de Alta Pressão/tendências , Cromatografia Líquida de Alta Pressão , Epimedium
20.
Drug Metab Dispos ; 43(10): 1590-600, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26135008

RESUMO

Herba Epimdii is a traditional Chinese medicine used to treat osteoporosis. Its main pharmacological ingredients are flavonoids. In previous studies conducted in healthy animals, we showed that epimedium flavonoids could be hydrolyzed into secondary glycosides or aglycon by intestinal flora or enzymes, thereby enhancing their absorption and antiosteoporosis activity. To study the medicine in the pathologic state, epimedium flavonoids were incubated with intestinal mucosa and feces in vitro and intestinal perfusion in situ to explore the differences in absorption and metabolism between sham and osteoporosis rats. For osteoporosis rats, the hydrolysis rates of icariin, epimedin A, epimedin B, and epimedin C incubated with intestinal flora for 1 hour were reduced by 0.19, 0.26, 0.19, and 0.14, respectively, compared with that in sham rats. Hydrolysis rates were reduced by 0.21, 0.24, 0.08, and 0.31 for icariin, epimedin A, epimedin B, and epimedin C incubated with duodenal enzymes for 1 hour and by 0.13, 0.09, 0.07, and 0.47 for icariin, epimedin A, epimedin B, and epimedin C incubated with jejunum enzymes, respectively, compared with the sham group. In addition, the apparent permeability coefficient and elimination percentage of the four epimedium flavonoids in the duodenum, jejunum, ileum, and colon decreased by 29%-44%, 32%-50%, 40%-56%, and 27%-53% compared with that in sham rats, respectively. The main metabolites of the four epimedium flavonoids were the same for the two groups after intestinal perfusion, or flora and enzyme incubation. In conclusion, the amount and activity of intestinal flora and enzymes changed in ovariectomized rats, which affected the intestinal absorption and hydrolysis of epimedium flavonoids whose structures contain 7-glucose.


Assuntos
Medicamentos de Ervas Chinesas/metabolismo , Epimedium/metabolismo , Flavonoides/metabolismo , Absorção Intestinal/fisiologia , Osteoporose/metabolismo , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Feminino , Flavonoides/administração & dosagem , Absorção Intestinal/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...